Modeling and efficient optimization for object-based scalability and some related problems

نویسنده

  • Pankaj Batra
چکیده

MPEG-4 is the first visual coding standard that allows coding of scenes as a collection of individual audio-visual objects. We present mathematical formulations for modeling object-based scalability and some functionalities that it brings with it. Our goal is to study algorithms that aid in semi-automating the authoring and subsequent selective addition/dropping of objects from a scene to provide content scalability. We start with a simplistic model for object-based scalability using the "knapsack problem"--a problem for which the optimal object set can be found using known schemes such as dynamic programming, the branch and bound method and approximation algorithms. The above formulation is then generalized to model authoring or multiplexing of scalable objects (e.g., objects encoded at various target bit-rates) using the "multiple choice knapsack problem." We relate this model to several problems that arise in video coding, the most prominent of these being the bit allocation problem. Unlike previous approaches to solve the operational bit allocation problem using Lagrangean relaxation, we discuss an algorithm that solves linear programming (LP) relaxation of this problem. We show that for this problem the duality gap for Lagrange and LP relaxations is exactly the same. The LP relaxation is solved using strong duality with dual descent--a procedure that can be completed in "linear" time. We show that there can be at most two fractional variables in the optimal primal solution and therefore this relaxation can be justified for many practical applications. This work reduces problem complexity, guarantees similar performance, is slightly more generic, and provides an alternate LP-duality based proof for earlier work by Shoham and Gersho (1988). In addition, we show how additional constraints may be added to impose inter-dependencies among objects in a presentation and discuss how object aggregation can be exploited in reducing problem complexity. The marginal analysis approach of Fox (1966) is suggested as a method of re-allocation with incremental inputs. It helps in efficiently re-optimizing the allocation when a system has user interactivity, appearing or disappearing objects, time driven events, etc. Finally, we suggest that approximation algorithms for the multiple choice knapsack problem, which can be used to quantify complexity vs. quality tradeoff at the encoder in a tunable and universal way.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gradient-based Ant Colony Optimization for Continuous Spaces

A novel version of Ant Colony Optimization (ACO) algorithms for solving continuous space problems is presented in this paper. The basic structure and concepts of the originally reported ACO are preserved and adaptation of the algorithm to the case of continuous space is implemented within the general framework. The stigmergic communication is simulated through considering certain direction vect...

متن کامل

Gradient-based Ant Colony Optimization for Continuous Spaces

A novel version of Ant Colony Optimization (ACO) algorithms for solving continuous space problems is presented in this paper. The basic structure and concepts of the originally reported ACO are preserved and adaptation of the algorithm to the case of continuous space is implemented within the general framework. The stigmergic communication is simulated through considering certain direction vect...

متن کامل

Micro-classification of orchards and agricultural croplands by applying object based image analysis and fuzzy algorithms for estimating the area under cultivation

Remote sensing technology is one of the most efficient and innovative technologies for agricultural land use/cover mapping. In this regard, the object-based Image Analysis (OBIA) is known as a new method of satellite image processing which integrates spatial and spectral information for satellite image process. This approach make use of spectral, environmental, physical and geometrical characte...

متن کامل

An efficient one-layer recurrent neural network for solving a class of nonsmooth optimization problems

Constrained optimization problems have a wide range of applications in science, economics, and engineering. In this paper, a neural network model is proposed to solve a class of nonsmooth constrained optimization problems with a nonsmooth convex objective function subject to nonlinear inequality and affine equality constraints. It is a one-layer non-penalty recurrent neural network based on the...

متن کامل

Modelsaz: An Object-Oriented Computer-Aided Modeling Environment

Modeling and simulation of processing plants are widely used in industry. Construction of a mathematical model for a plant is a time-consuming and error-prone task. In light of extensive advancements in computer science (both hardware and software), computers are becoming a necessary instrument in industrial activities. Many software tools for modeling, simulation and optimization of proces...

متن کامل

Comparative Study of Particle Swarm Optimization and Genetic Algorithm Applied for Noisy Non-Linear Optimization Problems

Optimization of noisy non-linear problems plays a key role in engineering and design problems. These optimization problems can't be solved effectively by using conventional optimization methods. However, metaheuristic algorithms such as Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) seem very efficient to approach in these problems and became very popular. The efficiency of these ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • IEEE transactions on image processing : a publication of the IEEE Signal Processing Society

دوره 9 10  شماره 

صفحات  -

تاریخ انتشار 2000